문제
수식은 일반적으로 3가지 표기법으로 표현할 수 있다. 연산자가 피연산자 가운데 위치하는 중위 표기법(일반적으로 우리가 쓰는 방법이다), 연산자가 피연산자 앞에 위치하는 전위 표기법(prefix notation), 연산자가 피연산자 뒤에 위치하는 후위 표기법(postfix notation)이 그것이다. 예를 들어 중위 표기법으로 표현된 a+b는 전위 표기법으로는 +ab이고, 후위 표기법으로는 ab+가 된다.
이 문제에서 우리가 다룰 표기법은 후위 표기법이다. 후위 표기법은 위에서 말한 법과 같이 연산자가 피연산자 뒤에 위치하는 방법이다. 이 방법의 장점은 다음과 같다. 우리가 흔히 쓰는 중위 표기식 같은 경우에는 덧셈과 곱셈의 우선순위에 차이가 있어 왼쪽부터 차례로 계산할 수 없지만 후위 표기식을 사용하면 순서를 적절히 조절하여 순서를 정해줄 수 있다. 또한 같은 방법으로 괄호 등도 필요 없게 된다. 예를 들어 a+b*c를 후위 표기식으로 바꾸면 abc*+가 된다.
중위 표기식을 후위 표기식으로 바꾸는 방법을 간단히 설명하면 이렇다. 우선 주어진 중위 표기식을 연산자의 우선순위에 따라 괄호로 묶어준다. 그런 다음에 괄호 안의 연산자를 괄호의 오른쪽으로 옮겨주면 된다.
예를 들어 a+b*c는 (a+(b*c))의 식과 같게 된다. 그 다음에 안에 있는 괄호의 연산자 *를 괄호 밖으로 꺼내게 되면 (a+bc*)가 된다. 마지막으로 또 +를 괄호의 오른쪽으로 고치면 abc*+가 되게 된다.
다른 예를 들어 그림으로 표현하면 A+B*C-D/E를 완전하게 괄호로 묶고 연산자를 이동시킬 장소를 표시하면 다음과 같이 된다.
결과: ABC*+DE/-
이러한 사실을 알고 중위 표기식이 주어졌을 때 후위 표기식으로 고치는 프로그램을 작성하시오
입출력 예시
입력: 첫째 줄에 중위 표기식이 주어진다. 단 이 수식의 피연산자는 알파벳 대문자로 이루어지며 수식에서 한 번씩만 등장한다. 그리고 -A+B와 같이 -가 가장 앞에 오거나 AB와 같이 *가 생략되는 등의 수식은 주어지지 않는다. 표기식은 알파벳 대문자와 +, -, *, /, (, )로만 이루어져 있으며, 길이는 100을 넘지 않는다.
출력: 첫째 줄에 후위 표기식으로 바뀐 식을 출력하시오
입력예시1)
A*(B+C)
출력예시1)
ABC+*
입력예시2)
A+B
출력예시2)
AB+
입력예시3)
A+B*C
출력예시3)
ABC*+
입력예시4)
A+B*C-D/E
출력예시4)
ABC*+DE/-
코드
import sys # input 함수 재정의를 위해
input = sys.stdin.readline
S = list(input().rstrip()) # 중위표기식 입력
def post(s): # 중위표기식을 후위표기식으로 변환하는 함수 정의
stack = [] # 스택 선언
result = "" # 결과값 선언
for x in s: # s에서 하나씩 받아온다
if x == '+' or x == '-': # 만약 덧셈(+) 또는 뺄셈(-)인 경우
while stack and stack[-1] != '(': # 스택 맨 위 값이 여는괄호('(')가 되기 전까지
result += stack.pop() # 스택 맨 위의 값을 결과값에 추가
stack.append(x) # 스택에 x 추가
elif x == '*' or x == '/': # 만약 곱셉(*) 또는 나눗셈(/)인 경우
while stack and (stack[-1] == '*' or stack[-1] == '/'): # 스택의 맨 위 값이 곱셈(*) 또는 나눗셈(/)이 되기 전 까지
result += stack.pop() # 스택 맨 위의 값을 결과값에 추가
stack.append(x) # 스택에 x 추가
elif x == '(': # x가 여는 괄호일 때
stack.append(x) # 스택에 괄호 추가
elif x == ')': # x가 닫는 괄호 일 때
while stack and stack[-1] != '(': # 스택의 맨 위의 값이 여는 괄호('(')가 되기 전 까지
result += stack.pop() # 스택 맨 위의 값을 결과값에 추가
stack.pop() # 스택에서 여는 괄호 제거
else: # 그 외의 모든 경우
result += x # 결과값에 x 추가
while stack: # 스택에 값이 남아있는 동안
result += stack.pop() # 남은 모든 스택의 값 결과값에 추가
return result # 결과 반환
print(post(S)) # 후위표기법으로 바꾼 결과 출력
실행 화면
채점 결과
'문제 풀이 > [BaekJoon]' 카테고리의 다른 글
[BaekJoon] 17298 오큰수 (Gold 4) - Python (0) | 2023.01.23 |
---|---|
[BaekJoon] 3015 오아시스 재결합 (Platinum 5) - Python (0) | 2023.01.23 |
[BaekJoon] 7490 0 만들기 (Gold 5) - Python (0) | 2023.01.18 |
[BaekJoon] 12919 A와 B 2 (Gold 5) - Python (0) | 2023.01.17 |
[BaekJoon] 17609 회문 (Gold 5) - Python (0) | 2023.01.17 |